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(85%). Sequential reaction of 23 with n-butyllithium and 
phenylcopper provides erythro-a-phenyl-8-hydroxytos- 
ylhydrazone (24a,8 60%). Hydrolysis12 of 24a provides 
erythro-@-hydroxy ketone 24bsJ5 (60%), which can be con- 
verted to acetate 24c8 [ (CH~CO)ZO/C~H~N,  98%] for the 
purpose of spectral assignment.16 The isomeric threo-tos- 
ylhydrazone 25a has not been directly isolated from this re- 
action, but its presence ( ~ 1 0 % ~ ~ )  has been inferred by isolation 
of threo-P-hydroxy ketone 25b8 (6%) by hydrolysis12 and 
chromatography of the 24a reaction residues (7% 24b also 
isolated). This places the value of the 24a:25a ratio for the 
phenylation reaction a t  -7:l. 

An additional complication exists with the acyclic example. 
Attempted dehydration of 24a (CeHc, reflux, 6 h) produces 
no unsaturated tosylhydrazone (26), but, instead, 24a 
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undergoes retro-aldol reaction. This difficulty is overcome by 
conversion of 24a to the bisacetyl derivative 27d7 (CH3- 
C0)20/CsHbN, 98%) which, in turn, can be converted to the 
thermodynamically more stable enone 27 by a single-step 
hydrolysis-elimination reaction (80%).l8 

Although the primary goal of this investigation was to 
provide methodology for the a-arylation of a,p-unsaturated 
ketones, the a-aryl-@-hydroxytosylhydrazones and a,P-un- 
saturated tosylhydrazones produced via the azoene route 
should serve equally well as precursors for previously estab- 
lished tosylhydrazone transformations.lg 
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a-Alkylation and Arylation of 
a$-Unsaturated Ketones 

Summary: The N,N-dimethylhydrazones of a,@-epoxy ke- 
tones react with aryl and alkyl Gringnard reagents to produce 
intermediates P-hydroxyhydrazones which are dehydrated 
to a-aryl or a-alkyl enones; the scheme represents a method 
for the introduction of alkyl and aryl groups on the a carbon 
of an a,@-unsaturated ketone. 

Sir: The introduction of carbon substituents on the a carbon 
of an a,@-unsaturated ketone, with preservation of the a,@ 
unsaturation (1 -, 2), can often be carried out by formation 

2 

of the thermodynamic enolate ion, followed by treatment with 
an alkyl ha1ide.l The method is not applicable, however, inter 
alia, (a) when the a,P-unsaturated ketone is incapable of 
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enolization toward the y carbon, (b) when the equilibration 
conditions are incompatible with sensitive functions in the 
molecule, and (c) when the desired a substituent is an aryl 
group.2 

We now describe a solution to this problem.3 Treatment of 
the N,N- dimethylhydrazone of the epoxy ketone corre- 
sponding to the initial a,@-unsaturated ketone with a primary 
alkyl or aryl Grignard reagent leads, after hydrolysis, to the 
desired a-alkylated or arylated enone. The sequence is shown 
in 3 -. 4.4 

H' 
3 

1 H' 
MezN 

-+ N F O H  O q  
/ R  R 

4 MezN 

We illustrate tlhe process in detail with isophorone oxide5 
5: treatment of 5 with 2 equiv of N,N-dimethylhydrazine and 
0.5 equiv of propionic acid (ethyl acetate, 0 O C ,  40 min)6 and 
work-up (10% aqueous sodium carbonate) gave the N,N- 
dimethylhydrazone 6 in 95% yield, as a 1:l mixture of syn and 
anti isomers [6 0.84 (s, 3 H), 0.93, 0.95 (2 s, ratio 45:55,3 H), 
1.32 (s, 3 H), 1.4-2.2 (m, 4 H), 2.38, 2.44 (2 s, ratio 1:1,6 H), 
3.14,3.89 (2  s, ratio 1:1,1 H);7 mass spectrum m/e 196.15611. 
Assignment of the 6 3.89 resonance to the syn isomer 6s was 
made by irradiation at 6 2.41 which produced nuclear Ov- 
erhauser effect enhancement of the 6 3.89, but not the 3.14, 
resonance. 

Reaction of the epoxyhydrazone 6 with 1.5 equiv of phen- 
ylmagnesium bromide (tetrahydrofuran, 0 "C -+ room tem- 
perature, 1.5 h), followed by hydrolysis of the crude product 
by refluxing with 3 M hydrochloric acid in 50% aqueous eth- 
anol for 1 h, gave (77% yield)8 2-phenylisophorone 7 (R = 

6s 

phenyl) [mp 85.5-87 "C, ir (film) 5.98,6.11 Mm; 6 1.09 (s, 6 H), 
1.78 (s, 3 H), 2.26 (s, 2 H), 2.29 (br s, 2 H), 6.80-7.30 (m, 5 H); 
mass spectrum m/e 214.13531. 

The dimethylhydrazone group can also be removed via 
ozonolysis (methylene chloride, 0 "C) and the resulting 0- 
hydroxy ketone dehydrated with either acid or base. Alter- 
natively, treatment of the crude Grignard reaction product 
with methyl iodide in acetonitrile a t  room temperature, fol- 
lowed by evaporation of solvent and hydrolysis of the residual 
quaternary salt in refluxing 90% aqueous 2-methoxyethanol 
containing a weak inorganic base (e.g., formate), gives the 
a$-unsaturated ketone.9 Yields via these procedures were 
comparable with those obtained using direct acid hydroly- 
sis. 

The synthesis of 7 (R = methyl,l0 buty1,ll and 3-methoxy- 
phenethyl) was carried out via the corresponding Grignard 
reagents to give 7 in yields of 63,65, and 61%. respectively? 
from the epoxy ketone 5. 

Cyclohexenone oxide (8) was transformed into 2-butylcy- 
clohexenone (9) in 45% yield; there was no evidence of attack 
of the Grignard reagent on the epoxide at  the 0 position. The 
epoxide 10 from 3-methylcyclopentenone was transformed 

0 Q OQ o q  o+ 
8 n-bu  10 R 

9 11 

12 
Ph 
13 

14 15 

by the same process into 3-methyl-2-phenylcyclopentenone 
(1 1, R = phenyl) in 53% yield, and also into the known dihy- 
drojasmone12 (1 1, R = n-C5H11) in 51% yield. 

The two epoxides, 12, from 10-methyl-A1~g-2-octalone13 
were separately converted in a similar sequence to the 1- 
phenyl derivative 13, mp 80-82 "C. The yield was higher (63%) 
from the dimethylhydrazone of the 0-oxide than that from the 
more slowly reacting a-oxide (47%). The two epoxides, 14, 
were separately converted to the known14 trans- 3,lO-di- 
methyl-A3-2-octalone (15), in 53% overall yield from the a- 
oxide15 and 40% overall yield from the @-oxide.lg 

We have made some attempts to determine the mechanism 
of the reaction and have established that, a t  least in the iso- 
phorone series, the initial opening leads stereospecifically to 
inversion a t  the a carbon of the epoxyhydrazone. This was 
demonstrated by comparing the two (different) @-hydroxy 
ketones 16 and 18 obtained, respectively, by (a) ozonolysis of 

the reaction product of the dimethylhydrazone of isophorone 
oxide with butylmagnesium bromide and (b) by sodium bor- 
ohydride reduction, followed by ceric ion cleavage,21 of the 
oxime of 2-butylisophorone oxide ( 17).22 The two substances 
were clearly isomeric [m/e 212 (Mf)],23 and both gave 2- 
butylisophorone (7, R = butyl) on acid-catalyzed dehydra- 
tion. 

These facts are compatible with direct displacement on the 
epoxide although they do not rule out an a priori possible 
elimination-addition mechanism.24 
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A Synthesis of a,@-Unsaturated Ketones 
from a,&Unsaturated Nitriles 

Summary: An effective sequence for the synthesis of a,P- 
unsaturated ketones involves (1) the Horner-Emmons mod- 
ification of the Wittig reaction to synthesize a,@-unsaturated 
nitriles, RzCH2(Rl)C=C(R3)CN, from carbonyl compounds, 
R2CH2COR1, and (2) the oxidative decyanation of the a,@- 
unsaturated nitriles to afford a,@-unsaturated ketones, 
R2CH=C(Rl)COR3, by sequential treatment with lithium 
diisopropylamide, oxygen gas, sodium sulfite, and sodium 
hydroxide. 

Sir: The condensation-dehydration reaction of a carbonyl 
compound 1 with an acyl carbanion equivalent 2 would pro- 
vide an a,P-unsaturated ketone 3 in which the carbonyl carbon 

1 2 3 
of 1 was incorporated as the a carbon of 3. We required 
methodology of this type in order to effect the homologation 
of 17-keto steroids to 20-ke t0-A~~ ster0ids.l Unfortunately, 

the classic Rupe rearrangement? of 17P-hydroxy-17a-ethynyl 
steroids derived from 17-keto steroids fails to effect the de- 
sired t ransf~rmat ion .~  We now wish to report that the oxi- 
dative decyanation4 of a$-unsaturated nitriles provides a 
convenient synthesis of certain a$-unsaturated ketones in- 
cluding 20-ke t0-A~~ steroids. In this case, the nitrile group 
serves as the masked carbonyl group in the acyl carbanion 
equivalent.5 

The Horner-Emmons modification of thq Wittig reaction6 
of aldehydes 4 (R1 = H) and ketones 4 with the anions of 
substituted diethyl phosphonoacetonitriles 5 furnishes a,@- 
unsaturated nitriles 6 in excellent yield. The reaction of 6 with 
lithium diisopropylamide in 20% HMPA-THF7 results in the 

\ 

7 

abstraction of a y hydrogen from a methylene site to afford 
the delocalized anion 7; The introduction of dry oxygen gas 
results in the regioselective trapping of 7 a t  the a carbon to 
produce the hydroperoxide 8. Reduction of 8 with aqueous 
sodium sulfite and exposure of the cyanohydrin to sodium 
hydroxide affords the a$-unsaturated ketone 9 in good yield 
(Table I). 

In exploring the scope of this oxidative decyanation pro- 
cedure, we have found that the reaction is well suited for the 
synthesis of a,P-unsaturated ketones but not a,@-unsaturated 
aldehydes. In addition, the reaction is limited to the synthesis 
of a,@-unsaturated ketones 9 which possess only one nonhy- 
drogen @ substituent.8 This apparent limitation can be turned 
to some advantage, however, in the synthesis of a,@-unsatu- 
rated ketones 9 derived from unsymmetrical ketones 4. For 
example, 2-isopropylcyclopentanone (10) furnished 11 which 

10 11 
is not otherwise readily accessible. In cases where the yields 
of 9 were disappointing, we found that a fraction of 6 had been 
diverted to the production of y-hydroxy-a,@-unsaturated 
nitriles. Although the regioselectivity of oxygen trapping a t  
the a or y sites in 7 varies with structure in a way that is not 
clearly understood, the oxidative decyanation of a,@-unsat- 
urated nitriles 6 provides a viable solution to the synthesis of 
an array of a,@-unsaturated ketones 9.9 

The following is a typical experimental procedure. To 131 mg (1.3 
mmol, 1.3 equiv) of diisopropylamine in 2.0 ml of anhydrous THF 
under a nitrogen atmosphere a t  -78 O C  was added 0.44 ml of 3.00 M 
n-butyllithium in hexane. To the lithium diisopropylamide solution 
was added 409 mg (1.0 mmol) of the tetrahydropyranyl ether of 3p- 
hydroxypregna-5,17(20)-diene-20-carbonitrile in 2.5 ml of 40% 
HMPA-THF. Oxygen gas was bubbled (250 ml/min) into the solution 
for 30 min. The reaction was quenched with 2 ml of 1 M sodium sulfite 
solution, stirred for 1 h at  25 "C, diluted with 25 ml of 20% dichloro- 
methane-ether, washed with 25 ml of 1 M sodium hydroxide solution 


